脱碳是什么意思?钢管表面脱碳是怎么回事?怎么处理脱碳问题?材料的脱碳是怎么一回事呢?这个脱碳的问题是如何发现的,发现了之后应该怎么处理的呢?今天我们就来研究一下脱碳这个问题。
脱碳是指钢的含碳量减少的现象称为脱碳。钢的加热温度过高或在高温下停留时间过长时易发生脱碳。有时还伴有严重的表面氧化。出现全脱碳层时组织中已无珠光体存在。仅有部分脱碳层时还保留一部分珠光体。碳钢及低合金钢在临氢高温状态下氢使钢中的Fe3C还原生成甲烷,也使珠光体脱碳,亦称氢腐蚀。脱碳后的钢材强度下降并软化。
关于脱碳层深度可根据脱碳成分、组织及性能的变化,采用多种方法测定。例如逐层取样化学分析钢的含碳量,观察钢的表面到心部的金相组织变化,测定钢的表层到心部的显微硬度变化等等。实际生产中以金相法测定钢的脱碳层最为普遍。
淬火的目的是提高钢的刚性、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。而调制,即淬火和高温回火的综合热处理工艺,目的是使钢铁零部件获得强度与韧性的良好配合,既有较高的强度,又有优良的韧性、塑性、切削性能等,调质处理在热处理中占有很重要的位置。
调质件大都在比较大的动载荷作用下工作,这类零件主要为各种机器和机构的结构件,如轴类、连杆、螺柱、齿轮等,在机床、汽车等制造工业中用得很普遍。
45钢淬火温度在A3+(30~50)℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病。
对于需要淬火的钢,脱碳使其表层的含碳量降低,淬火后不能发生马氏体转变或转变不完全,结果得不到要求的硬度。轴承钢表面脱碳后会形成淬火软点,使用时易发生接触疲劳损坏,高速工具钢表面脱碳会使红硬性下降。采用45K冷镦钢的螺栓也因为调质处理过程中热处理炉内保护气氛不规范,导致氧化脱碳,最终让螺栓断裂失效了。
脱过碳的组织没有碳化物,所以组织是很白的,在显微镜下是亮白色,其实氧化和脱碳是两个独立的过程,钢在热处理过程中表面与炉膛空气中的氧发生氧化反应生成氧化物的现象称为氧化。
钢在热处理过程中表面的碳获得一定能量后脱离表层进入炉膛气氛中,使表面碳含量下降的现象称为脱碳。
防止脱碳的对策主要有以下几方面:
1)工件加热时,尽可能地降低加热温度及在高温下的停留时间;合理地选择加热速度以缩短加热的总时间;
2)造成及控制适当的加热气氛,使呈现中性或采用保护性气体加热,为此可采用特殊发计的加热炉(在脱氧良好的盐浴炉中加热,要比普通箱式炉中加热的脱碳倾向为小);
3)热压力加工过程中,如果因为一些偶然因素使生产中断,应降低炉温以待生产恢复,如停顿时间很长,则应将坯料从炉内取出或随炉降温;
4)进行冷变形时尽可能地减少中间退火的次数及降低中间退火的温度,或者用软化回火代替高温退火。进行中间退火或软化回火时,加热应在保护介质中进行;
5)高温加热时,钢的表面利用覆盖物及涂料保护以防止氧化和脱碳;
6)正确的操作及增大工件的加工余量,以使脱碳层在加工时能完全去掉。
1)2Cr13不锈钢加热温度过高,保温时间过长时,能促使高温δ铁素体在表面过早的形成,使锻件表面的塑性大大降低,模锻时容易开裂。
2)奥氏体锰钢脱碳后,表层将得不到均匀的奥氏体组织。这不仅使冷变形时的强化达不到要求,而且影响耐磨性,还可能由于变形不均匀产生裂纹。
3)钢的表面脱碳以后,由于表层与心部的组织不同和线膨胀系数不同,因此淬火时所发生的不同组织转变及体积变化将引起很大的内应力,同时表层经脱碳后强度下降,甚至在淬火过程中有时使零件表面产生裂纹。
对于需要淬火的钢,脱碳使其表层的含碳量降低,淬火后不能发生马氏体转变,或转变不完全,结果得不到所要求的硬度。轴承钢表面脱碳后会造成淬火软点,使用时易发生接触疲劳损坏;高速工具钢表面脱碳会使红硬性下降。由于脱碳使钢的疲劳强度降低,导致零件在使用中过早地发生疲劳损坏。
零件上不加工的部分(黑皮部分)脱碳层全部保留在零件上,这将使性能下降。而零件的加工面上脱碳层的深度如在机械加工余量范围内,可以在加工时切削掉;但如超过加工余量范围,脱碳层将部分保留下来,使性能下降。有时因为锻造工艺不当,脱碳层局部堆积,机械加工时将不能完全去掉而保留在零件上,引起性能不均,严重时造成零件报废。
影响钢脱碳的因素有钢料的化学成分,加热温度,保温时间和煤气成分等。
钢料的化学成分对脱碳有很大影响。钢中含碳量愈高脱碳倾向愈大W、Al、Si、Co等元素都使钢脱碳倾向增加;而 Cr、Mn等元素能阻止钢脱碳。
随着加热温度的提高,脱碳层的深度不断增加。一般低于1000℃时,钢表面的氧化皮阻碍碳的扩散,脱碳比氧化慢,但随着温度升高,一方面氧化皮形成速度增加;另一方面氧化皮下碳的扩散速度也加快,此时氧化皮失去保护能力,达到某一温度后脱碳反而比氧化快。
加热时间越长,加热火次愈多,脱碳层愈深,但脱碳层并不与时间成正比增加。例如高速钢的脱碳层在1000℃加热0.5h,深度达0.4mm;加热4h达1.0mm;加热12h后达1.2mm。炉内气氛对脱碳的影响在加热过程中,由于燃料成分,燃烧条件及温度不同,使燃烧产物中含有不同的气体,因而构成不同的炉内气氛,有氧化性的也有还原性的。他们对钢的作用是不同的。
氧化性气氛引起钢的氧化与脱碳,其中脱碳能力最强的介质是H2O(汽),其次是CO2与O2,最后是H2;而有些气氛则使钢增碳,如 CO和 CH4。炉内空气过剩系数α大小对脱碳也有重要的影响:当α过小时、燃烧产物中出现H2,在潮湿的氢气内的脱碳速度随着含水量的增加而增大。
因此,在煤气无氧化加热炉中加热,当炉气中含H2O较多时,也要引起脱碳;当α过大时,由于形成的氧化皮多,阻碍着碳的扩散,故可减小脱碳层的深度。在中性介质中加热时,可使脱碳最少。
防止脱碳的对策主要有以下几方面:
1)工件加热时,尽可能地降低加热温度及在高温下的停留时间;合理地选择加热速度以缩短加热的总时间;
2)造成及控制适当的加热气氛,使呈现中性或采用保护性气体加热,为此可采用特殊发计的加热炉(在脱氧良好的盐浴炉中加热,要比普通箱式炉中加热的脱碳倾向为小);
3)热压力加工过程中,如果因为一些偶然因素使生产中断,应降低炉温以待生产恢复,如停顿时间很长,则应将坯料从炉内取出或随炉降温;
4)进行冷变形时尽可能地减少中间退火的次数及降低中间退火的温度,或者用软化回火代替高温退火。进行中间退火或软化回火时,加热应在保护介质中进行;
5)高温加热时,钢的表面利用覆盖物及涂料保护以防止氧化和脱碳;
6)正确的操作及增大工件的加工余量,以使脱碳层在加工时能完全去掉。
金相检测是通过观察材料微观结构、内部组织,进而通过组织结构或者缺陷来判断材料的性能。可以说金相是热处理的眼睛。
所以能够对金相有一定了解能够帮助我们更好的解决我们实际生产中的问题,让理论和时间更好地融合在一起,对于生产实践有着重要的指导作用。
脱碳是钢表层上碳的缺失,一般分为两种类型
①部分脱碳
②完全脱碳(钢样表层碳含量水平低于碳在铁素体中最大溶解度)
(注:完全脱碳层只有铁素体组织存在。)
对于绝大多数钢材料而言,脱碳现象会导致钢材料的性能变差,故将脱碳层看作钢材料的一种缺陷,尤其是对于某些特种钢(如工具钢、轴承钢、高速钢等)而言,脱碳层更是严重地影响其性能。钢材料表层中的C元素被氧化后将会形成脱碳层,体现在化学成分上脱碳层的碳元素含量比正常组织较低,体现在金相组织上脱碳层中的渗碳体(Fe3C)的数量比正常组织中少,体现在力学性能上脱碳层的强度和硬度比正常组织低。
(图中箭头方向表示脱碳层)
GCr15表面脱碳的金相图
碳素钢表面脱碳(100X)
60Si2MnA弹簧钢表面脱碳
20MnTiB调质钢表面脱碳
测定方法的选择及其准确度取决于产品的脱碳程度、显微组织、含碳量以及部件的形状。一般采用金相法、硬度法、化学或者光谱分析法测定碳含量的方法测定。具体详情大家可以参照 :GB/T 224-2008 钢的脱碳层深度测定法 标准
下面我们就金相法进行分析。总脱碳层的测定—-在中碳钢、低合金钢中是以铁素体与其他组织组成的相对量变化来区分的。借助于测微目镜或直接在显微镜毛玻璃屏上测量从表面到其组织和基体组织已无区别的那一点距离。对每一试样,在深的均匀脱碳区一个视场内,应随机进行几次测量(至少需5次),以这些测量值的平均值作为总脱碳层深度;而对于工具钢、轴承钢、弹簧钢是测量深处的脱碳层作为总脱碳层深度的。
全脱碳层的测定---全脱碳层是指试样表面脱碳后得到的全铁素体组织,因此,测量时应从表面测至有渗碳体或有珠光体出现的那一点,或测量产生全铁素体组织的渗度为全脱碳层深度。
放大倍数的选择取决于脱碳层深度,如果需方没有特殊规定,通常采用的放大倍数为100倍。一般来说,具有近似平衡组织的钢种脱碳层取决于珠光体的减少量(见下图)。
图1 60Si2Mn弹簧钢的全脱碳层深度100X
图2 35#调质钢的总脱碳层深度 100X
图2 65Mn弹簧钢的总脱碳层深度 100X
从上图我们可以直观的看到氧化皮、完全脱碳层、部分脱碳层三部分区域。
(1) 钢材料的表面形成脱碳层以后,因钢材料的表面与内部组织的差异以及其线膨胀系数的不同,在淬火过程中不同组织间的转变和体积的变化会产生巨大的内应力,同时脱碳层的形成会导致钢表层的强度下降,在进一步的机械加工过程中可能使零部件的表面产生裂纹缺陷。
(2) 对于需要进行淬火热处理的钢材料,表面形成脱碳层后使其含碳量下降,淬火后的马氏体不能够进行转变或者不能全部发生转变,导致钢材料的硬度和强度达不到要求,在使用过程中容易出现接触疲劳损坏现象。
(3) 钢材料产生脱碳层以后导致其疲劳强度降低,加工生产的零部件在使用过程中会出现过早的疲劳损坏现象。
(4) 零部件表层形成的脱碳层(黑皮部分)未被加工,会导致零部件的性能降低;如果脱碳层的深度小于加工余量,在进行机械加工时可以完全被切削掉,不影响零部件的性能;如果脱碳层的深度大于加工余量,在进行机械加工时不能完全被切削掉(部分脱碳层被保留下来),使零部件的性能下降。由于锻造加工工艺不当,造成零件表面的脱碳层出现局部堆积现象,而且在进行加工过程中不能够将产生的脱碳层完全切削掉,保留下来的脱碳层会导致零件的性能不均,严重时可导致零件的报废。
(1) 零部件在进行加热过程中,尽量降低加热温度和减少在高温下的加热时间,确定合理的加热速率,缩短总的加热时间。
(2) 设计具有特殊功用的加热炉,严格控制加热炉中的加热气氛,使炉中的气体呈中性,具有保护作用。
(3) 在热加工过程中,若因某些特殊原因而停止,应当将加热炉温度降低等待恢复加工生产,如果停止时间过长,必须将待加热材料取出来或者随加热炉冷却。
(4) 在冷变形加工过程中,应当尽量控制中间过程中的退火次数和降低退火温度,必要时可进行软化回火处理,以降低脱碳层的形成,退火和软化回火等热处理操作必须在保护介质中进行。
(5) 进行高温加热时,可在钢材料的表面增加覆盖物或者进行涂层保护,用来防止钢材料的氧化和脱碳。
(6) 钢材料进行加工时选择正确的操作(如加大零部件的机械加工余量),以保证产生的脱碳层能够完全被切削掉。